## Exercise 1

Find the general solution for the following second order ODEs:

$$
u^{\prime \prime}-4 u^{\prime}+4 u=0
$$

## Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-4 r e^{r x}+4 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-4 r+4=0
$$

Factor the left side.

$$
(r-2)^{2}=0
$$

$r=2$ with a multiplicity of 2 . Therefore, the general solution is

$$
u(x)=C_{1} e^{2 x}+C_{2} x e^{2 x} .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =e^{2 x}\left(2 C_{1}+C_{2}+2 C_{2} x\right) \\
u^{\prime \prime} & =4 e^{2 x}\left(C_{1}+C_{2}+C_{2} x\right) .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-4 u^{\prime}+4 u=4 e^{2 x}\left(\varnothing_{1}+C_{2}+C_{2}\right)-4 e^{2 x}\left(2 \varnothing_{1}^{\prime}+C_{2}+2 C_{2 x}\right)+4 e^{2 x}\left(\varnothing_{1}+C_{2} x\right)=0,
$$

which means this is the correct solution.

